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Abstract

This paper examines the critical role of energy storage innovation in achieving en-

vironmental targets. Traditional macroeconomic models have often overlooked the im-

portance of enabling technologies to overcome the intermittency of clean energy. We

incorporate storage technology into an endogenous growth model. Due to the com-

plementarity between renewables and storage technology, the productivity of storage

technology becomes a key determinant of the private incentives to innovate in clean

energy relative to fossil fuels. We calibrate it to the U.S. economy and find four main

results: First, models that neglect the role of energy storage overestimate the effec-

tiveness of climate policy. Second, clean and dirty energy are currently complementary

inputs due to the low productivity of storage technologies. Third, the low productivity

of storage technologies may have reduced clean innovation with a magnitude similar to

the shale gas boom. Fourth, current policy such as the Inflation Reduction Act is not
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sufficient to decarbonize U.S. energy supply. To reach decarbonization targets, we need

additional policy effort to close the productivity gap between renewables and storage

technology.

Keywords: Economic growth, endogenous technical change, storage, sub-optimal cli-

mate policy

JEL classification: O33, O44, Q43, Q48

1 Introduction

To meet the ambitious targets set by the Paris Agreement, the efficient use of renewable en-

ergy is essential. A critical element in the successful integration of renewables into the energy

system is storage, as these technologies allow excess energy to be stored during periods of

high production and released when demand is high, thus ensuring a stable and reliable clean

energy supply.1 Although innovation in renewable technologies has been a central theme in

climate policy discussions, the dependence of renewables on effective storage solutions has

often been underemphasized.2 Moreover, the climate-economy macro literature has mostly

overlooked the complementary role of energy storage. Consequently, the need for innovation

and deployment of storage technologies—alongside its importance for achieving environmen-

tal goals—remains largely unexplored.

This paper analyses the role of storage technology innovation and deployment in achiev-

ing environmental targets and advancing toward a carbon-neutral economy. Traditional

endogenous growth macroeconomic models (e.g., Acemoglu, 2002) have shown that as long

as competing technologies are substitutes, policies that improve the productivity of one of

the sectors can shift innovation to this sector. In the context of the energy transition, this

1We use the term “storage” in a broad sense, encompassing all enabling technologies, including batteries,
hydrogen fuel cells, and similar systems.

2The share of renewable energy R&D has been approximately 4 times higher than that of storage R&D
since the mid-2000’s in the International Energy Agency members (see Figure A1).
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implies that temporary carbon taxes and research subsidies are sufficient to ensure the clean

energy transition (Acemoglu et al., 2012) (henceforth AABH). However, these frameworks

often overlook the intermittency challenge posed by renewables—and the essential role of

storage in mitigating this issue, thus limiting their ability to assess the transition accurately.

This raises several pressing questions: Can limited storage technology and capacity hinder

the energy transition even in the presence of stringent climate policies? How does dependency

on storage affect the efficiency of these policies? How does storage alter the substitutability

between renewables and fossil fuels? Are current and prospective climate policies sufficient

to meet environmental goals?

To answer these questions, we develop a climate-economy model with clean and dirty

energy inputs, along with directed technological development a la AABH. Unlike traditional

models, our framework requires both renewable energy and storage capacity to produce the

clean input.3 As renewables and storage are complements, their relative profitability of

innovation is subject to a negative path dependency, which incentivizes innovation in the

less advanced sector. Furthermore, we show that private innovation incentives between dirty

and renewable energy inputs are shaped by two forces: (i) the direct path dependency effect,

which promotes innovation in the more advanced sector; and (ii) the indirect path dependency

effect, which reduces the profitability of innovation in renewables relative to dirty when the

productivity gap between renewables and storage widens. The second force implies that,

unlike in the traditional paradigm, advances in renewable technology do not necessarily

increase incentives to further improve the productivity of renewable energy. Instead, the

progress of storage technology becomes a pivotal factor in driving the shift away from dirty

innovation and production. Thus, the energy transition is made substantially more difficult

given the currently low productivity of storage technologies.

Our model further rationalizes the recent trends in patenting activity across different

3This is in line with Andrés-Cerezo and Fabra (2023), which finds empirical complementarity between
renewables and storage as long as the share of renewables in the grid is above a critical threshold.
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energy technologies. Innovation in renewable energy—measured by the number of patent

applications—saw a marked decline around 2010. This downturn has been attributed to

several factors, including the technological maturation of renewable energy solutions, the

advent of the shale gas boom (Acemoglu et al., 2023), and broader economic constraints

following the Great Recession (Popp et al., 2022). Innovation in energy storage, on the

other hand, followed a distinctly different path, which has not been previously documented

in the literature. In contrast to renewables, patent applications in storage technologies not

only avoided a decline but actually increased during the same period. Figure 1 presents these

trends for the United States Patent and Trademark Office (USPTO).4 Our model provides an

additional explanation for these patterns through the productivity gap between renewables

and storage: When the gap is large, incentives to innovate in renewables are low, while

incentives for storage innovation are high.5

To assess the effectiveness of climate policies, we calibrate our model to match the U.S.

economy in 2006-2010. First, we show that climate policy is substantially less effective in a

framework that accounts for storage compared to the traditional AABH model. Second, we

examine the U.S. Inflation Reduction Act (IRA) on economic and climate outcomes. Before

the IRA, the U.S. paradigm was characterized by a public support for R&D that was strongly

biased towards renewables. However, the IRA introduces significant funding for clean energy

production. Despite some improvements, our findings suggest that the U.S. energy mix will

remain largely dominated by fossil fuels over the next decades. As a result, the COP28

Agreement, which aims to triple the global share of renewable energy capacity by 2030,

will not be achieved in the U.S. context. To meet this target, we find that the IRA would

need to increase its efforts by 2.3 times. Interestingly, had the technological gap between

renewables and storage been 50% smaller, the necessary efforts to achieve the international

4Figure A2 reproduces Figure 1 as a share of total patent applications. Notably, these trends are not
exclusive to the USPTO; Figures A3 and A4 in the appendix show similar patterns across other patent
offices, including the U.S., Japan and France.

5Unlike our framework, the AABH model is not able to explain the post-2010 decline in renewables and
Acemoglu et al. (2023) overlooks the evolution of storage innovation.
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Figure 1: Patent applications filed at the USPTO, 1978-2018, in energy technologies. To be
classified as a renewable patent, the application must have a CPC (cooperative patent clas-
sification) code included in the “Low-carbon energy supply” category from the IEA (2021).
Storage patents are those classified as batteries and hydrogen storage. Source: Patstat.
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goal would be only 1.7 times higher than current levels. Third, we find that both pre- and

post-IRA policy can reduce consumer welfare in a scenario in which the rest of the world will

limit its emissions to the 2ºC target, especially if the international goal were to be achieved

through increased IRA-style provisions. This is because, in the suboptimal setting we study,

the avoided climate damages of emission reductions in the U.S. do not compensate for the

innovation and production distortions that these types of policies create.

In addition, our model reinforces the notion that the substitutability between clean and

dirty energy is not constant over time. Although our model assumes a constant elasticity

of substitution between clean and dirty energy, the substitutability between renewables and

fossil fuels is nonetheless a function of energy storage due to its complementarity with renew-

ables. After analytically deriving its expression, we compute the substitutability between

renewables and fossil fuels for different levels of storage capacity, finding that renewables

and fossil fuels are, in fact, complements due to the current low levels of storage capacity.

However, increasing the storage capacity increases the substitutability between renewables

and fossil fuels, which become substitutes when storage capacity equals that of renewables.

This complements the findings from earlier studies showing that the elasticity of substitution

between fossil fuels and clean energy depends on the clean energy share (Jo and Miftakhova,

2024)6, the development of storage technology (Gentile, 2024),7 or the investments in the

substitutability itself (Stöckl, 2020, Stöckl and Zerrahn, 2023)8.

6Using French manufacturing data, Jo and Miftakhova (2024) find that clean and dirty energy have become
more substitutable over time. By employing a “variable elasticity of substitution” (VES) production function
within a directed technical change model, they show that a VES accelerates the clean energy transition,
reducing reliance on policy intervention.

7Gentile (2024) incorporates directed innovation into a microfounded model of energy production with
intermittency to study optimal climate policy. She finds that the elasticity of substitution between clean and
dirty energy sources depends on the degree of intermittency and the technological level in the energy sectors.

8Stöckl (2020) build a growth model with endogenous investment in substitutability between clean and
dirty energy. Due to decreasing marginal returns, it becomes eventually profitable to invest in increased
substitutability. Thus, in a growing economy, fossil fuels are gradually replaced by renewable energy, even
in the absence of a carbon tax. Stöckl and Zerrahn (2023) develop a bottom-up optimization model of the
electricity market with clean and dirty energy inputs, which they use to derive production isoquants from
German market data. They find that the elasticity of substitution is above unity as long as some energy
storage is available. However, they also find that the elasticity may decrease at very high shares of renewables
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Related literature. The evaluation of climate policies using macroeconomic growth

models has a long tradition in economics, with numerous studies highlighting the effective-

ness of carbon taxes on emissions reductions (e.g. Nordhaus, 1993, Golosov et al., 2014,

Hassler, Krusell, and Olovsson, 2021, Barrage and Nordhaus, 2024). A significant advance-

ment in this field emerged with the recognition of innovation in renewable energy technologies

as a crucial factor in addressing climate issues. This insight led researchers to adapt the liter-

ature on endogenous technical change (notably through the work of Romer, 1990, Acemoglu,

2002), culminating in seminal studies such as Goulder and Mathai (2000), Popp (2004) and

AABH. Their findings underscored the importance of coupling carbon taxes with additional

policies—specifically, research subsidies aimed at fostering renewables innovation—to effec-

tively drive the transition to a carbon-free economy.9 However, this literature still falls short

in accurately representing the energy transition, as it often overlooks a critical limitation

of renewable energy: its inability to fully substitute fossil fuels without the simultaneous

development of effective energy storage solutions. Our main contribution to this strand of

literature is to show—both analytically and quantitatively—that this omission leads to a

substantial overestimation of the efficiency of policies target at renewables.

Our findings align with those of Arkolakis and Walsh (2023) and Gentile (2024), as they

also highlight that storage requirements can significantly slow the energy transition and the

IRA policy can increase the clean energy share. However, our methodological approaches

differ. Arkolakis and Walsh (2023) develop a spatial dynamic model with different energy

sectors, learning-by-doing, and different exogenous scenarios for storage capacities and costs.

On the other hand, Gentile (2024) constructs a micro-founded energy model that integrates

intermittency and innovation, coupling it with a macroeconomic framework. Our approach

in electricity generation that are currently not observed, which could be due to low availability of energy
storage.

9Other papers in this literature have analyzed optimal policy when the degree of substitutability grows
over time. E.g., Mattauch, Creutzig, and Edenhofer (2015) find that the carbon tax must be permanent when
there is an exogenous growth in the elasticity of substitution in a model with learning-by-doing spillovers,
while Growiec and Schumacher (2008) find that exogenous growth in the substitutability of energy inputs is
sufficient to overcome resource constraints in a Ramsey growth model.
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adopts a purely macroeconomic perspective through a macro-climate model that incorporates

three energy sectors: dirty energy, renewables, and storage. In this framework, intermittency

is represented by the complementarity between renewables and storage. This enables us

to explicitly explore how this complementarity reshapes existing theoretical insights about

path dependency in clean innovation. We further demonstrate that a nested CES structure

addresses a common critique of non-nested CES approaches: their inability to model vari-

ables with non-constant elasticities of substitution. Specifically, we show that the implicit

substitution elasticity between renewables and dirty energy depends on storage capacity.

Additionally, our model provides a new explanation for the observed collapse in renewable

energy innovation and the simultaneous rise in storage innovation. Finally, we contribute

to this recent literature by examining the achievement of key environmental targets and

estimating the additional policy stringency required when these targets are not met.

This paper further contributes to the literature that studies the intermittency issue from

a static—and partial equilibrium—perspective (e.g., Ambec and Crampes, 2019, Helm and

Mier, 2019). These studies focus on the design of an efficient electric mix but they use

a static framework, thus ignoring the energy transition. As a result, they tend to find a

less vital role of storage technology due to its current low productivity. Pommeret and

Schubert (2022) study the optimal transition to renewables, explicitly distinguishing between

intermittency and variability,10 in a dynamic general equilibrium framework, but do not

account for endogenous innovation. They show that when the intermittency is severe, it is

optimal to build storage capacity early.

In addition, the literature on industrial organizations has extensively analyzed the role

of storage in wholesale electricity markets (e.g. Butters, Dorsey, and Gowrisankaran, 2024,

Andrés-Cerezo and Fabra, 2023, Karaduman, 2023, Lamp and Samano, 2022). These studies

commonly focus on investigating the value of storage in electricity markets, its impact on

10They define variability as “being predictable: it follows a natural pattern such as the alternation of
day and night, or of seasons.” On the other hand, they define intermittency as “being stochastic, due to
unpredictable weather events like cloud formation”
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electricity prices, and on the congestion of the electricity grid. We contribute to these studies

by analyzing the role of storage in the energy transition from a macroeconomic perspective

and, importantly, taking into account innovation incentives and climate policies.

Finally, our paper helps shed light on the impacts of the Inflation Reduction Act on the

energy transition, climate outcomes, and welfare. A growing body of literature is engaging in

this endeavor, recognizing the Inflation Reduction Act as a landmark policy with significant

implications for the U.S. economy and climate goals. For instance, Bistline, Mehrotra, and

Wolfram (2023a) evaluate the macroeconomic effects of the policy, while Bistline et al. (2023)

study the emissions reductions induced by the policy using a number of existing models. Our

model provides new insights into the medium- and long-term effects of this policy, from an

endogenous growth perspective and exploring its effects on innovation in storage.

The remainder of the paper is organized as follows. In Section 2 we present our theoretical

model. Section 3 details the model calibration, illustrates numerically the main analytic

results, evaluates the effectiveness of climate policies in the context of storage, and analyses

the elasticity of substitution between fossil fuels and renewables. Section 4 presents the main

quantitative results, Section 5 explores the renewables collapse and Section 6 assesses the

evolution of carbon emissions and consumers’ welfare. Finally, section 7 concludes.

2 Theoretical model

The following describes the theoretical framework and derives the main analytical results.

2.1 The economy: model set-up

Consumption

A representative household has well-behaved preferences over consumption Ct and environ-

mental quality St. Their lifetime utility is given by
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U0 =
∞∑
t=0

βtu(Ct, St)

where u is the instantaneous utility of consumption and β is the utility discount factor. The

standard properties of u apply: it is increasing in Ct (u
′(Ct) > 0), twice differentiable and

concave (u′′(Ct < 0), and satisfies limCt→0 u
′((Ct) = ∞.

Production

The final good, Yt, is produced by perfectly competitive firms that combine a dirty energy

(Ydt) input with a clean energy input (Yct) according to a CES production function,

Yt =
(
Y

ϵ−1
ϵ

dt + Y
ϵ−1
ϵ

ct

) ϵ
ϵ−1

, (1)

where ϵ is the elasticity of substitution between the dirty and clean input.

The use of one unit of the dirty input releases ξ units of CO2 emissions

Et = ξtYdt.

The clean input is produced by firms that combine renewable energy (Yrt) with storage

production (Yst) under perfect competition and according to a CES production function,

Yct =

(
δY

ρ−1
ρ

rt + (1− δ)Y
ρ−1
ρ

st

) ρ
ρ−1

, (2)

where ρ is the elasticity of substitution between renewables and storage and δ is the input

share of renewables in clean production.

In what follows, we make the following assumption.

Assumption 1. ϵ > 1 and ρ ∈ (0, 1).

Assumption 1 states that dirty and clean sources of energy are substitutes. This is based on
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existing empirical evidence on the substitutability between dirty and clean sources of energy

(Papageorgiou, Saam, and Schulte, 2017, Jo, 2024, Stöckl and Zerrahn, 2023). However,

renewables and energy storage are complements in the production of clean energy.11

The intermediate input in sector j, where j ∈ {d, r, s}, is produced by perfectly competi-

tive firms that combine labor with a unit continuum of machines according to a Cobb-Douglas

production function,

Yjt = L1−α
jt

∫ 1

0

A1−α
ijt x

α
ijtdi. (3)

A machine i in sector j is used only in that sector. There is a fixed supply of workers

normalized to unity, and market clearing implies that Ldt+Lrt+Lst ≤ 1. Profit-maximization

by producers of intermediate input j results in the following demand for machines

xijt =

(
αpjt
pijt

) 1
1−α

AijtLjt, (4)

and in the following wage rate

wjt = (1− α)pjt
Yjt
Ljt

. (5)

Machines are produced by using ψ units of the final good. In each machine i there is a

single monopolist that maximizes profits,

max
{pijt, xijt}

(pijt − ψ)xijt. (6)

This results in the standard monopoly price,

pxijt =
ψ

α
, (7)

11This is consistent with the notion that the intermittency of renewable energy sources can be mitigated
through energy storage solutions. The assumption is empirically supported by both Andrés-Cerezo and
Fabra (2023), when renewables capacity is sufficiently high, and our own analysis (see section A.3.1 for more
details). Pommeret and Schubert (2022)’s quantitative results further support it.
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which is a constant mark-up above marginal costs.12 Combining Eqs. (7) and (4), the optimal

demand for machines becomes

xijt =

(
α2pjt
ψ

) 1
1−α

AijtLjt. (8)

Finally, using the price of machines from Eq. (7) and the demand for machines from Eq. (8),

the per-period profit of a producer of a machine i used in sector j is

πijt = (1− α)

(
α

ψ

) α
1−α

(αpjt)
1

1−αAijtLjt. (9)

Innovation

In each period, there is a fixed mass of scientists that is normalized to unity. Scientists are

free to choose the sector to focus their innovation efforts, and they can choose between dirty,

renewable, or storage technology. Successful innovation leads to an increase in technology

productivity by a factor (1 + γ). If successful, the new productivity of machine i is

Aijt+1 = (1 + γ)Aijt.

The aggregate (and average) machine quality in sector Ajt is denoted by

Ajt =

∫ 1

0

Aijtdi.

This assumes that there are no innovation spillovers across sectors. Such an assumption

grants us some non-negligable degree of analytical tractability and allows us to provide an-

alytical insights on storage technology and the clean transition. However, it is at odds with

the empirical evidence on knowledge spillovers (e.g. Dechezleprêtre, Martin, and Mohnen,

12Note that this distortion could be eliminated by providing a subsidy to equate the price of machines with
the marginal cost, pxijt = ψ. However, we choose to keep the monopoly distortion in the model.
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2017). For that reason, in the quantitative exercise, we incorporate knowledge spillovers into

the model as detailed in section 2.3.

Each scientist has a probability of ηj of making a successful innovation in sector j. How-

ever, due to duplication of ideas, there are decreasing returns to the number of scientists in a

sector given by sωjt, where ω ∈ (0, 1). Hence, the average technology level in sector j evolves

according to

Ajt = (1 + γηjs
ω
jt)Ajt−1. (10)

Taking into account the probability of success and the evolution of productivity, the

expected profits of a scientist in sector j are given by

Πjt = ηjs
ω−1
jt (1 + γ)(1− α)

(
α

ψ

) α
1−α

(αpjt)
1

1−αLjtAjt−1. (11)

The expected profit of research in sector j relative to sector k is given as

Πjt

Πkt

=
1 + qjt
1 + qkt

× ηj
ηk

(
sjt
skt

)ω−1(
pjt
pkt

) 1
1−α

× Ljt
Lkt

× Ajt−1

Akt−1

, (12)

where j and k ∈ {c, s, d}, and qjt and qkt are potential subsidies given to research in sector

j and k. As in AABH, the last three terms in (12) capture the price effect, the market size

effect and the direct productivity effect, respectively.13 In the following section, we detail the

qualitative changes that these effects experience.

Market clearing requires sdt+srt+sst ≤ 1, and in equilibrium, scientists must be indifferent

between the different sectors, which implies that Πdt = Πrt = Πst.

13The first one pushes innovation towards the sector with higher prices; the second one, towards the sector
with larger employmet; and the thrid one towards the sector with a higher technological level (building on
the shoulder of giants-effect).
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2.2 Characterization of the decentralized equilibrium

A detailed derivation of the decentralized equilibrium is provided in the Appendix. Section

A.2 details each agent’s maximization problem, as well as the equilibrium level of prices, labor

shares, and output. In what follows, we characterize the equilibrium allocation of scientists.

Definition 1. The equilibrium consists of a sequence of wages (wt), input prices (pjt), ma-

chine prices (pjit), labor demands (Ljt), input demands (Yjt), machine demands (xjit), sci-

entists allocations (sjt) and exogenously given policies (zjt, qjt) for each sector j ∈ (d, r, s),

such that, in each period t, (i) (pjit, xjit) maximizes machine i producer’s profits; (ii) Ljt

maximizes input producers’ profits; (iii) Yjt maximizes final good producer’s profits; (iv) (sjt)

maximizes the expected profits of researchers at time t; (v) the labor market clears; and (vi)

the inputs market clears.

Allocation of scientists

The allocation of scientists is implicitly given by Eq. (12). Using the relative price in Eq.

(A8) and labor shares from Eqs. (A16), the profitability of research in renewables relative to

storage can be expressed as

Πrt

Πst

=
1 + qrt
1 + qst

ηr
ηs

(
srt
sst

)ω−1(
δ

1− δ

)ρ(
Art
Ast

)−(1+σ)
Art−1

Ast−1

. (13)

Inserting for the evolution of technology in Eq. (19), the relative profitability can be written

as a function of past productivity levels, current environmental policy, and the allocation of

scientists,

Πrt

Πst

=
1 + qrt
1 + qst

ηr
ηs

(
srt
sst

)ω−1(
δ

1− δ

)ρ(
1 + γηrs

ω
rt

1 + γηssωst

)−(1+σ)(
Art−1

Ast−1

)−σ

. (14)

Note that this expression is equal to the relative profitability of clean innovation in AABH.

Given Assumption 1 we can easily prove the following lemma:
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Lemma 1. Assume that Assumption 1 holds. Then, the evolutions of renewable and energy

storage technologies experience a negative path dependence. That is, the expected profitability

of innovation in renewables relative to energy storage is decreasing in the productivity of

renewables and increasing in the productivity of energy storage.

Proof. Under Assumption 1, σ > 0, from which it follows that
∂

Πrt
Πst

∂Art−1
< 0 and

∂
Πrt
Πst

∂Ast−1
> 0.

Since the two inputs are complements, the price effect introduced in (12) and detailed in

(A8) dominates. Note also that an increase in the number of scientists in renewables makes

innovation in renewables less profitable relative to storage.

In addition to Eq. (23), the profitability of innovation in renewables can also be expressed

relative to fossil fuels, using the relative price in Eq. (A8) and the relative labor given by

Eqs. (A17 and A21) as:

Πrt

Πdt

=
1 + qrt
1 + qdt

ηr
ηd

(
srt
sdt

)ω−1(
1− zd
1− zc

)ϵ(
Art
Adt

)−1−ϕ
Art−1

Adt−1

δρ
[
δρ + (1− δ)ρ

(
Art
Ast

)σ] ρ−ϵ
1−ρ

,

(15)

where ϕ ≡ (1 − α)(1 − ϵ). Inserting for the evolution of technology in Eq. (19), the rel-

ative profitability can again be written as a function of past productivity levels, current

environmental policy, and the allocation of scientists,

Πrt

Πdt

=
1 + qrt
1 + qdt

ηr
ηd

(
srt
sdt

)ω−1(
1− zd
1− zc

)ϵ(
1 + γηrs

ω
rt

1 + γηdsωdt

)−1−ϕ(
Art−1

Adt−1

)−ϕ

︸ ︷︷ ︸
Direct path dependency effect

× δρ
[
δρ + (1− δ)ρ

(
1 + γηrs

ω
rt

1 + γηssωst

)σ (
Art−1

Ast−1

)σ] ρ−ϵ
1−ρ

︸ ︷︷ ︸
Indirect path dependency effect

. (16)

When clean and fossil fuel energy are substitutes (ϵ > 1), an increase in the productivity of

renewables relative to fossil fuels increases the relative profitability of research in renewables

(Direct path dependency effect). As in AABH, the effect of an increase in the share of
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scientists in renewables on the relative profitability of research depends on whether clean

energy and fossil fuels are weak or strong substitutes (ϵ > (2− α)(1− α)).

However, compared to AABH, the profitability of renewable research relative to dirty

research is expanded by an additional term that takes into account the productivity of re-

newable relative to storage technology. This leads to the following lemma:

Lemma 2. Under Assumption 1 and holding all else equal, it is ambiguous whether an in-

crease in Ar pushes scientists to innovate in the renewable or in the dirty sector. Specifically,

higher levels of Ar affect the relative profitability of renewables over fossil fuels through two

opposing forces: firstly, positively via the direct path dependence effect, and secondly, nega-

tively via the indirect path dependence effect.

Proof. Under Assumption 1, ϕ < 0 and ρ − ϵ < 0. Thus, an increase in Art−1 increases

Πrt

Πdt
via the direct path dependency effect and decreases it via the indirect path dependency

effect.

Lemma 2 highlights a relevant feature of our framework that departs from the existing

literature. It summarizes the fact that an increase in the productivity of renewables does

not necessarily induce innovation towards better renewable technologies. In particular, an

increase in Ar has two counteracting effects on the profitability of research in renewables

relative to fossil fuels. On the one hand, since clean and dirty inputs are substitutes, then

ϕ < 0, which leads to a positive path dependence (captured by the direct path dependence

effect). On the other hand, since ϵ > ρ and ρ < 1, the indirect path dependence effect pushes

innovation away from renewables and towards the dirty sector.

Although the full path dependency effect is ambiguous, we can still explore the relative

strength of the indirect path dependency effect.

Proposition 1. All else equal and under Assumption 1, an increase in the technology ratio

between renewables and energy storage Art−1

Ast−1
or a decrease in the input share of renewables,

δ, increases the strength of the indirect path dependency effect.
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Proof. Under Assumption 1, ∂(Indirect path dependency effect)

∂
Art−1
Ast−1

< 0. Furthermore, with lower values

of δ, the negative component of ∂(Indirect path dependency effect)
∂δ

is larger, which makes it more

plausible to satisfy that ∂(Indirect path dependency effect)
∂δ

< 0.

That is, when the gap between renewables and storage productivity widens, research in

renewables becomes less profitable, inducing less innovation in renewables compared to fossil

fuels (see section A.4 in the Appendix for a graphical illustration of the proposition). This

reflects the need to balance the technological development of the two complement inputs in

order to avoid an environmental disaster. Furthermore, the negative indirect effect is more

pronounced if the input share of renewables is lower.

Finally, we can show the following.

Proposition 2. Assume that Assumption 1 holds. Then, all else equal, higher levels of

historical storage technology increase the profitability of renewables relative to dirty research.

Proof. Under Assumption 1, σ is positive and ϵ > ρ, from which follows that
∂

Πrt
Πdt

∂Ast−1
> 0.

Proposition 2 results from the complementarity between renewables and storage, (ρ < 1).

Even though the direct path dependence effect in (16) is unaffected by an increase in Ast, the

complementarity between storage and renewables activates the new indirect path dependency

effect. Compared to a framework with only clean and dirty inputs, the introduction of

storage makes research in renewables less profitable, all else equal. That is, with storage,

the two technologies have to increase simultaneously, making it more difficult to increase

renewables. Looking closer at the indirect path dependency effect, one can also see that

higher historical levels of storage technology push innovation towards renewables to ensure

that the technologies of the renewable good is not left behind.
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2.3 Incorporating technology spillovers across different sectors

In what follows, we extend the previous model to incorporate technology spillovers across

sectors. The intuition for the cross-sector spillovers is that whenever a sector is less advanced

relative to other sectors, it benefits from ideas that other sectors have already developed.

To incorporate this into our model, we assume that the probability of making a successful

innovation in a machine from sector j, Probjt, now depends not only on the number of

scientists in the sector but also on the technological level, following

Probjt = ηjs
ω
jt

(
At−1

Ajt−1

)ν
, (17)

where At−1 is the average technological level across sectors,

At =
Adt + Art + Ast

3
. (18)

As in Fried (2018), the term
(
At−1

Ajt−1

)ν
accounts for the technological spillovers across sec-

tors by increasing the productivity of research in a relatively backward sector. The parameter

ν ∈ (0, 1) reflects the strength of the cross-sector spillovers.

Hence, the average technology level in sector j evolves according to

Ajt = Ajt−1

[
1 + γηjs

ω
jt

(
At−1

Ajt−1

)ν]
, (19)

Taking into account the probability of success and the evolution of productivity, the

expected profits of a scientist in sector j, given by (11) without spillovers, become

Πjt = ηjs
ω−1
jt (1 + γ)(1− α)

(
α

ψ

) α
1−α

(αpjt)
1

1−αLjtA
1−ν
jt−1A

ν
t−1. (20)

With spillovers, the expected profit of research in sector j relative to sector k in (12) is given

by
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Πjt

Πkt

=
1 + qjt
1 + qkt

× ηj
ηk

(
sjt
skt

)ω−1(
pjt
pkt

) 1
1−α

× Ljt
Lkt

×
(
Ajt−1

Akt−1

)1−ν

. (21)

Specifically, the expected profitability of innovation in renewables relative to energy stor-

age is given by

Πrt

Πst

=
1 + qrt
1 + qst

ηr
ηs

(
srt
sst

)ω−1(
δ

1− δ

)ρ(
Art
Ast

)−(1+σ)(
Art−1

Ast−1

)1−ν

. (22)

As before, it can be written as a function of past productivity levels,

Πrt

Πst

=
1 + qrt
1 + qst

ηr
ηs

(
srt
sst

)ω−1(
δ

1− δ

)ρ(1 + γηrs
ω
rtA

−ν
rt−1

1 + γηssωstA
−ν
st−1

)−(1+σ)(
Art−1

Ast−1

)−σ−ν

︸ ︷︷ ︸
Direct path dependency effect

. (23)

And, similarly for renewables over dirty,

Πrt

Πdt

=
1 + qrt
1 + qdt

ηr
ηd

(
srt
sdt

)ω−1(
1− zd
1− zc

)ϵ(
Art
Adt

)−1−ϕ(
Art−1

Adt−1

)1−ν

δρ
[
δρ + (1− δ)ρ

(
Art
Ast

)σ] ρ−ϵ
1−ρ

.

(24)

which, as a function of past productivity levels, becomes

Πrt

Πdt

=
1 + qrt
1 + qdt

ηr
ηd

(
srt
sdt

)ω−1(
1− zd
1− zc

)ϵ(1 + γηrs
ω
rtA

ν
t−1A

−ν
rt−1

1 + γηdsωdtA
ν
t−1A

−ν
dt−1

)−1−ϕ(
Art−1

Adt−1

)−ϕ−ν

︸ ︷︷ ︸
Direct path dependency effect

× δρ
[
δρ + (1− δ)ρ

(
1 + γηrs

ω
rtA

ν
t−1A

−ν
rt−1

1 + γηdsωdtA
ν
t−1A

−ν
dt−1

)σ (
Art−1

Ast−1

)σ] ρ−ϵ
1−ρ

︸ ︷︷ ︸
Indirect path dependency effect

. (25)

Although cross-sector technology spillovers increase the realism of the model, they come

at the expense of analytical tractability. That is, we can no longer analytically show the

effect of changes in initial productivity levels on the relative profitability of innovation in the
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different energy sectors. Therefore, we evaluate the nature of the path dependency effects in

the quantitative analysis.

3 Quantification

The following section serves four key purposes. First, it presents the calibration of the model

parameters. Second, it provides a numerical illustration of Propositions 1 and 2, offering

concrete examples that support the theoretical insights. Third, it compares the predictions

of our model to those of existing models, focusing on the effectiveness of climate policy.

Finally, the section estimates the degree of substitutability between renewable energy sources

and fossil fuels, shedding light on the dependence of this elasticity of substitution on storage

capacity.

3.1 Calibration

In the model runs, we begin the simulations in 2011 and simulate the model for 16 periods,

with each period equal to five years. Table 1 shows the parameter values used in the simu-

lations. In our theoretical model in Section 2, we assumed that clean energy and fossil fuels

were substitutes in the production of final energy, which is in line with the findings of the

empirical literature.14 The elasticity chosen in previous papers has ranged from 0.7 in Kary-

das and Zhang (2019) to 10 in Acemoglu et al. (2012). We use an elasticity of substitution of

1.8561, which is an average of the elasticity estimated by Papageorgiou, Saam, and Schulte

(2017) in the electricity sector. Due to the lack of empirical estimates of the substitution

elasticity between renewables and energy storage, we use an estimate of 0.5, which ensures

14Papageorgiou, Saam, and Schulte (2017) use sector-level data in a panel of countries and find evidence
that the elasticity of substitution exceeds unity in most sectors. However, there is generally a sizeable
heterogeneity between sectors. In a panel of French manufacturing firms, Jo (2024) finds estimates of the
elasticity ranging between 2 and 5 in different sectors.
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that the two inputs are strong complements in producing clean energy.15 However, to balance

this strong complementarity, we assume a distribution parameter of renewables of 0.85 in the

production function of clean energy.

Following convention, we set the share of machines to 1/3 in the production of the inputs.

Without loss of generality, we normalize the cost of machines to α. To begin simulations,

we must assign initial productivity levels to fossil fuels, renewables and energy storage. We

calibrate productivity levels using the average power generation capacity in the United States

from 2006 to 2010. According to the US Energy Information Administration, the average

net summer power generation capacity in this period was 769.95 million kilowatts for fossil

fuels, 117.20 million kilowatts for renewables, and 21.94 million kilowatts for energy storage.16

This leads to an initial productivity of fossil fuels that is 1.2 times greater than renewables

(1503.0/1257.7), and an initial productivity of renewables 11.3 times larger than energy

storage (1257.7/111.3).

In the research sector, we normalize the quality step of a successful innovation to unity

and follow Acemoglu et al. (2012) by assuming that each scientist has a 2% probability of

making a successful innovation each year. This ensures that the long-run annual growth rate

is equal to 2% in the simulations and that the allocation of scientists between sectors is not

driven by differences in research productivity. The level of decreasing returns to innovation

is given by ω, which we set equal to 0.5 following Acemoglu et al. (2016). For the cross-sector

spillover parameter, we choose a conservative estimate of 0.3.

15This is in line with Andrés-Cerezo and Fabra (2023)’s empirical estimate. Furthermore, in section A.3.1 in
the Appendix, we clarify our empirically informed choice of the elasticity of substitution between renewables
and energy storage.

16The data is found in table 7.7a in the Monthly Energy Review published by the EIA: https://www.eia.
gov/totalenergy/data/monthly/

21

https://www.eia.gov/totalenergy/data/monthly/
https://www.eia.gov/totalenergy/data/monthly/


Table 1: Parameter values used in model simulations

Parameter Model value Source

Final good production

Electricity elasticity of substitution, ϵ 1.8561 Papageorgiou et al. (2017)

Clean energy elasticity of substitution, ρ 0.5 See section A.3.1

Distribution parameter in clean energy, δ 0.85 -

Intermediate production

Share of machines in production, α 1/3 -

Cost of machines, ψ α Normalization

Initial productivity of renewables, Ar0 1257.7 Calibration

Initial productivity of energy storage, As0 111.3 Calibration

Initial productivity of fossil fuels, Ad0 1503.0 Calibration

Research sector

Size of innovations, γ 1 Normalization

Probability of innovation in renewables, ηr 0.2 Acemoglu et al. (2012)

Probability of innovation in energy storage, ηs 0.2 Acemoglu et al. (2012)

Probability of innovation in fossil fuels, ηd 0.2 Acemoglu et al. (2012)

Decreasing returns to scientists, ω 0.5 Acemoglu et al. (2016)

Spillover parameter, ν 0.3 -
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3.2 Illustration of Propositions 1 and 2

According to Propositions 1 and 2, an increase in the productivity of renewables is no longer

guaranteed to increase the relative profitability of innovation in renewables. In fact, the in-

crease in the productivity of renewables may instead decrease innovation efforts in renewables

due to the widening of the productivity gap between renewables and storage technology. In

general, this indirect path dependency effect depends on the initial productivity gap between

renewables and storage and the input share of renewables in the production of clean energy.

To illustrate the propositions, we simulate the model following a +100% increase in the

initial productivity of renewables (Ar0) in three different scenarios. In the first scenario,

the simulations are based on the parameters in Table 1. In the second scenario, we instead

assume a lower input share of renewables in the production of clean energy (δ = 0.5), that is,

storage technology becomes more important in overcoming the intermittency of renewables.

In the third scenario, we again assume a lower input share of renewables (δ = 0.5), but in

addition, we close the productivity gap between renewables and storage by setting the initial

productivity of storage equal to that of renewables (As0 = Ar0). All other parameters are

equal to their values in Table 1, except for the spillover effect (ν), which we set to zero to

align the simulations with the propositions. For each scenario, we simulate the model for 10

periods and compare the change in the allocation of scientists to a baseline scenario without

the productivity shock in renewables.

Figure 2 illustrates the percentage change in the allocation of scientists in renewables,

storage, and fossil fuels caused by the +100% increase in Ar0 in the three scenarios. For ref-

erence, Figure A6 in the Appendix provides the detailed allocation of scientists both before

and after the change in Ar0. In all scenarios, the figure shows a reduction of scientists in fossil

fuels and an increase of scientists in storage caused by the productivity shock. However, the

effect of the shock on innovation efforts in renewables depends on the initial productivity

gap between renewables and storage technology and the input share of renewables in clean

production. When these are equal to our baseline parameters, the shock induces more sci-
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(a) Baseline parameters (b) δ = 0.5 (c) δ = 0.5 and As0 = Ar0

Figure 2: Illustration of Propositions 1 and 2. The graphs show the percentage change in
the allocation of scientists following a +100% increase in Ar0 in three different scenarios: (a)
baseline parameters, (b) a lower input share of renewables in clean production, and (c) a
lower input share of renewables in clean production when storage is initially as productive
as renewables. Note that there are no spillovers in innovation in the scenarios (ν = 0).

entists to renewables (panel a). However, if the input share of renewables is lower, then the

productivity shock in renewables is instead reducing the number of scientists in renewables

(panel b). In that case, the widening of the productivity gap between renewables and storage

technology is causing the indirect path dependency effect to dominate the direct path depen-

dency effect in the profitability of innovation in renewables relative to fossil fuels. Finally,

if we also close the productivity gap between renewables and storage, then the productivity

shock in renewables is again inducing more scientists to renewables despite the lower input

share of renewables (panel C).

This exercise illustrates the ambiguity of increasing the productivity of renewables on

future innovation in the technology when renewables also depend on storage technology.

Figure A7 uses a heat map to illustrate the range of values of the indirect path dependency

effect in Eq. 16 under varying levels of As0 and δ.

3.3 Effectiveness of climate policy with storage

Standard environment and endogenous growth models do not incorporate the intermittency

issue of renewables. In what follows, we show that this omission causes standard models
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to overestimate the effectiveness of climate policies in inducing the use of clean energy. In

general, the requirement of energy storage in the production of clean energy makes it more

difficult to induce the transition to clean energy because policymakers must now push two

technologies (renewables and storage) simultaneously to phase out fossil fuels. To illustrate

this, we compare the efficiency of climate policy in our model with and without storage

technology. Note that the storage sector in our model can be turned off by assuming that

δ = 1, in which case clean production simplifies to the production of renewables (Yct ≡ Yrt).

In the absence of a storage sector, the model is reduced to the familiar setup in AABH, in

which energy is produced solely by combining fossil fuels with renewables, and we therefore

refer to the model without storage as the “AABH model”.

In this exercise, we assume a scenario in which climate policy in the past had ambitious

targets to increase the use of renewables, and as a result, renewables have become substan-

tially more productive compared to their current level. The purpose of this exercise is to

compare the increase in clean energy caused by a policy-induced improvement in the produc-

tivity of renewables when clean energy also requires energy storage. Specifically, we simulate

both models to the end of the century with and without a +100% increase in the initial

productivity of renewables (Ar0) and compare the effect of the productivity shock on the

share of clean energy. All other parameters are equal to their values in Table 1, except for

the spillover effect (ν), which we assume for simplicity to be zero (note that in this case, the

allocation of scientists in the storage model is as in the previous exercise).

Panels a and b in Figure 3 show the share of clean energy with and without the produc-

tivity shock in renewables in the storage model and the AABH model, respectively. Panel

c shows the percentage change in the share of clean energy caused by the shock relative to

the baseline level in both models.17 In the AABH model, the share of clean energy doubles

instantly following a policy-driven improvement in renewable productivity (panel c). In con-

17Note that the positive slope in panel c is due to the decrease of the absolute values of panels a and b
over time.
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(a) Storage model (b) AABH model (c) Comparison

Figure 3: Comparison of storage model and AABH model. The graphs show the share of
clean energy with and without a +100% increase in the initial productivity of renewables
(Ar0) in the model with storage technology (panel b) and in the AABH model without energy
storage (panel b). Panel c shows the percentage change in the share of clean energy caused
by the productivity shock relative to the baseline in both models. Note that there are no
spillovers in innovation in the scenarios (ν = 0) and no climate policy in place.

trast, our storage model predicts only a 50 percent increase. This is because, in our model,

higher renewable productivity must be accompanied by advances in storage technologies to

fully realize its impact on clean energy use, making the transition more challenging. Note

that the share of clean energy decreases over time due to the lack of climate policy in the

simulations.

3.4 Variable elasticity of substitution between renewables and fos-

sil fuels

The standard environment and endogenous growth literature further assumes a constant

elasticity of substitution between fossil fuels and renewable energy sources. However, this

assumption conflicts with recent empirical findings that indicate that this elasticity changes

over time. For example, Jo and Miftakhova (2024) examine the elasticity of substitution in

the French manufacturing sector and find that it increases as the share of clean energy grows.

Our framework reconciles this by employing a nested CES structure that integrates renew-

ables and storage to produce clean energy. We demonstrate that this approach enables a
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variable elasticity of substitution between renewables and fossil fuels, which can range signif-

icantly—from complementary to substitutable—depending on the level of storage capacity.

In our model, the elasticity of substitution of clean and dirty energy is denoted by ϵ.

Clean energy is modeled as a composite of renewables and energy storage. To determine

the elasticity of substitution between renewables and dirty energy, we adapt the standard

definition of elasticity of substitution to our model

elr,d ≡
∆ ln

(
Ydt
Yrt

)
∆ ln(MRTSr,d)

, (26)

where

MRTSr,d =
∂Yt
∂Yrt
∂Yt
∂Ydt

= Y
1
ϵ
dt δY

− 1
ρ

rt

(
δY

ρ−1
ρ

rt + (1− δ)Y
ρ−1
ρ

st

) ρ+ϵ
ϵ(ρ−1)

.

Eq. 26 shows that the elasticity of substitution between renewables, elr,d, is a function of

the capacity to store energy Yst. Specifically, the elasticity increases in the level of energy

storage because of the complementarity between energy storage and renewables.

In Figure 4, we use our definition in (26) to estimate the elasticity of substitution between

renewables and fossil fuels for a percentage change in Yr between +1 to +100%. In the

calculations, we use the initial capacity of renewables and fossil fuels, Yd0 and Yr0, observed

at the beginning of our simulation period, as well as the parameter values in Table 1 for

ϵ, ρ and δ. In the baseline exercise (blue line), we calculate the elasticity of substitution

given the initial capacity level of energy storage, Ys0. At this low level of energy storage,

the elasticity between renewables and fossil fuels is always below unity, and the two inputs

are complements. Increasing the storage capacity increases the substitutability, but the

elasticity is still below unity even for doubling of the storage capacity (orange line). If we

instead assume that we have the same amount of capacity in storage as we do in renewables

(green line), the two goods become weak substitutes.
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Figure 4: Elasticity of substitution between renewables and fossil fuels given the initial
capacities of the technologies (Yr0 and Yd0) for different levels of storage capacity (Ys0). The
dotted black line indicates the estimate for the elasticity of substitution between clean and
fossil fuel energy (ϵ).

4 Policy analysis

In this section, we use the calibrated model to evaluate the capacity of current U.S. energy

policy to achieve the energy transition and meet international environmental goals. Specif-

ically, we simulate the calibrated model for different assumptions regarding the production

and R&D subsidies to clean and dirty production.

4.1 Current U.S. energy policy

We first evaluate the outcome of both current and planned U.S. energy policy. Table 2 gives

an overview of the policy rates in the different scenarios. As a baseline, we define a No

policy scenario, in which we assume that there is no energy policy in place, that is, both

production and R&D subsidies are set to zero. In the Current policy scenario, production

and R&D subsidies are set at the observed rates in the energy sector during 2011–2015 and

remain constant at these levels throughout the simulation period.
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From 2010 to 2016, the US government gave on average 11756.33 and 1204.5 million US

dollars (in 2016 dollars) each year to clean and dirty energy production, respectively.18 To

convert these subsidies to shares of the private value of clean and dirty energy production,

we proceed in two steps. First, we estimate the private value of clean and dirty energy

generation. From 2010 to 2016, the US generated an annual average of 2,761,098 GWh

and 521,375 GWh of electricity from fossil fuels and renewables, respectively.19 Based on

estimates of the levelized cost of energy (LCOE) from 2010 to 2016 from Lazard (2024), we

calculate an average LCOE of 148.5 and 90.4 dollars per MWh for clean and dirty energy

production, respectively.20 Second, we take the ratio of the public energy subsidies and the

private value of energy production to find an estimate of the subsidy rate. This gives us an

estimated subsidy rate of 15.2% for clean energy (11, 756, 000, 000/((521, 375×1000)×148.5))

and 0.5% for dirty energy (1, 204, 000, 000/((2, 761, 098× 1000)× 90.4)).

To estimate the public R&D subsidies, we use the data on public R&D expenditures from

the IEA (2023). In the period 2011 to 2015, 13.5% and 2.4% of total U.S. public energy R&D

expenditures were allocated to renewables and fossil fuels, respectively. In the same period,

R&D in battery technology was subsidized with 1.9% of total public R&D expenditures.21

Hence, renewables receive a subsidy that is 7.1 times higher than storage (13.5/1.9) and 5.6

times higher than fossil fuels (13.5/2.4).

Finally, we consider a scenario based on the plans of the U.S. Inflation Reduction Act

(IRA) of 2022. This federal law, introduced by the Biden administration, aims to accelerate

18The data is found in table 3 in the report “Direct Federal Financial Interventions and Subsidies in Energy
in Fiscal Year 2016” published by the EIA: https://www.eia.gov/analysis/requests/subsidy/archive/
2016/pdf/subsidy.pdf. Note that the subsidies contain both direct expenditures and tax expenditures.

19The data is found in table 7.2a in the Monthly Energy Review published by the EIA: https://www.eia.
gov/totalenergy/data/monthly/

20Note that the LCOE for clean is an average of LCOE estimates for solar and wind energy, taking into
account recent estimates that add storage, whereas the LCOE for dirty energy is an average of the estimates
for coal and natural gas.

21Note that R&D subsidies for battery technologies include expenditures on battery technology in electric
vehicles. For transparency, section A.5 provides results excluding this assumption. This assumption reflects
the plausible impact of innovation subsidies for electric vehicle batteries on advancements in energy storage
technologies in general.
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Table 2: Overview of policy rates in policy scenarios

Production Innovation

zd zc (1 + qr)/(1 + qd) (1 + qr)/(1 + qs)

No policy 0 0 1 1

Current policy 0.005 0.152 5.6 7.1

+ IRA subsidy 0.005 0.2 5.6 7.1

the transition to a clean energy economy. Its proponents have described it as “the most

significant action Congress has taken on clean energy and climate change in the nation’s

history” (The White House, 2023). The IRA allocates substantial energy- and climate-related

public expenditures for renewable electricity and energy storage, primarily through tax credits

and direct support for production and investments. These provisions account for nearly half of

the IRA’s estimated costs (see Table 1 in Bistline, Mehrotra, and Wolfram (2023b)). Recent

estimates suggest these measures are equivalent to a 20% production subsidy for electricity

generated from clean energy sources (Bistline, Mehrotra, and Wolfram (2023b), Figure 7).22

Therefore, in the + IRA subsidy scenario, we increase the clean production subsidy to

20%.

Figure 5 compares the allocation of scientists and the share of clean energy under each

policy scenario in Table 2. In the absence of production and R&D subsidies (blue line), the

high productivity of fossil fuels drives most scientists to the dirty sector, causing the share

of clean energy to fall from 8% to below 4% at the end of the simulation period. Introducing

the current energy policy (orange line) causes a large shift in scientists from fossil fuels to

renewables. The increase in innovation in renewables causes a substantial increase in the clean

energy share, which is persistent and slightly increasing over time. However, since fossil fuels

are still subsidized more than energy storage, a substantial share of scientists remain in the

22Other studies have used the same estimate to summarize the IRA provisions on clean energy production,
e.g. Casey and Gao (2024).
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Figure 5: Allocation of scientists and share of clean energy from 2015 to 2090 from simulations
in absence of policy and with current policy (with and without the IRA clean production
subsidy).

fossil fuels sector, and there is only a small increase in the share of clean energy at the end

of the simulation period.23 The share of scientists in energy storage continues to increase

throughout the simulations, which is due to the large productivity gap between renewables

and energy storage, which pushes scientists into the storage sector in the short term.

In the + IRA subsidy scenario with a 20% clean production subsidy (green line), the

higher clean production subsidy causes an increase in the share of clean energy. However,

despite the large increase in the production subsidy, the increase is relatively small. According

to our simulations, the IRA will cause only an increase in the initial share of clean energy

of one percentage point. Due to the high share of scientists in fossil fuels, there is only a

modest increase in the share of clean energy during the simulation period.

In conclusion, our policy analysis reveals a decline in innovation efforts for renewables un-

der the current climate policies. In contrast, innovation in storage technology is increasing,

despite limited support for storage innovation. This trend is driven by the significant pro-

ductivity gap between renewables and storage, which shifts innovation efforts toward energy

storage. Both trends are consistent with the observed innovation patterns of renewables and

energy storage patents displayed in Figure 1. We believe this represents a key contribution

23Specifically, the subsidy to fossil fuels is 1.3 times larger than the subsidy to energy storage (7.1/5.6).
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of our framework: By incorporating storage into a model of technological change, we can

explain the observed rise in patenting activity in energy storage technologies and the collapse

in renewables.24

4.2 Decarbonization targets and sufficient subsidy rates

A primary motivation for countries to implement climate policies is to contribute to inter-

national climate goals. Here, we evaluate the effectiveness of current and planned energy

policies in meeting decarbonization targets. Specifically, we focus on the COP28 Agreement,

which aims to triple the global share of renewable energy capacity by 2030, and adapt this

goal to the U.S. context. If the targets are projected to fall short, we calculate the clean

production subsidy required to meet them. Table 3 summarizes the results. In all scenarios,

R&D subsidies and the dirty production subsidy are kept constant at their current levels,

whereas the clean production subsidy is adjusted across scenarios. Figure 6 illustrates the

evolution of scientists and the share of clean energy. For comparison, the IRA subsidy

scenario (green line) reproduces the results from Figure 5.

Our first finding is that the current IRA clean production subsidy is insufficient to meet

the COP28 target by 2030. Column 3 in Table 3 shows that it achieves only a 78% increase

in renewable capacity. Given this disparity, we calculate the clean production subsidy that

would be necessary to achieve the goal within the IRA-framework, that is, holding R&D sub-

sidies and the dirty production subsidy constant at their current levels. We find that tripling

the initial renewable energy capacity by 2030 requires increasing the clean production sub-

sidy to 46% (column 3 in the second row). As Figure 6 shows (red line), this adjustment

significantly boosts the share of scientists working in the renewable and storage sectors com-

pared to the IRA scenario, while the share of scientists in the dirty sector decreases sharply,

as expected.

Finally, we examine how the initial productivity of storage technology affects the subsidy

24See section 5 for a deeper investigation of the collapse in renewables.

32



Table 3: Decarbonization targets by 2030.

Parameters Outcomes

As0 zc %∆Yr30 sr30 ss30 sd30 COP28

(1) (2) (3) (4) (5) (6) (7)

IRA subsidy 111.3 0.2 78 0.64 0.06 0.30 No

Sufficient subsidy 111.3 0.46 200 0.83 0.08 0.09 Yes

Sufficient subsidy w/ higher As0 222.6 0.345 200 0.85 0.04 0.11 Yes

required to achieve the COP28 target. Specifically, we calculate the clean production subsidy

needed to triple the renewable energy capacity by 2030 in a scenario in which the initial

level of storage productivity, As0, is 100% higher. This represents a 50% reduction in the

technological gap between renewables and storage. With this improved productivity, the

required subsidy decreases to 34.5%. As Figure 6 shows (purple line), the initial share

of clean energy is still very similar to the Sufficient subsidy scenario, despite the lower

subsidy for clean energy. This highlights the critical role of closing the technology gap

between renewables and storage to facilitate the energy transition. Note also that the higher

technological level of storage, combined with the cross-sector spillovers, causes a reallocation

of scientists from energy storage to renewables and fossil fuels.

In the Sufficient Subsidy scenario, clean energy capacity reaches 351 GW by 2030,

compared to just 208 GW in the IRA subsidy scenario. This is driven by the significantly

higher clean production subsidy, which raises the initial share of clean energy to nearly 25%

and directs almost all innovation efforts toward clean energy sectors. However, because of

the substantial productivity gap between renewables and storage, the share of scientists in

renewables decreases over time, whereas the share in storage technology steadily increases.
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Figure 6: Allocation of scientists and share of clean energy from 2015 to 2090 from simulations
with the IRA clean production subsidy and with the required clean production subsidy to
achieve the COP28 decarbonization target (with and without a +100% increase in As0).

5 Collapse in renewable innovation

We now turn to investigating the role that a lagged storage technological level plays in

determining the well-documented collapse in patents in renewable technology after 2010 (see

Figure 1). The literature has attributed this collapse to the maturity of the technology, the

tightening of capital after the financial crisis (Popp et al., 2022), as well as the technological

developments in hydraulic fracturing, also known as the shale gas boom (Acemoglu et al.,

2023). Our model offers a new and complementary explanation for the collapse, namely the

large technological gap between energy storage and renewables, which reduces the relative

profitability of innovation in renewables. In the following analysis, we explore the magnitude

of this new mechanism by comparing the effect of a reduction in the productivity gap to that

of the shale gas boom on the allocation of scientists and the share of clean energy in the

economy.

To do so, we simulate the economy to the end of the century in different scenarios. First,

we simulate the economy assuming that a shale gas boom occurred prior to the simulation

period. Following Acemoglu et al. (2023) we define the shale gas boom as a +100% increase

in the initial productivity of fossil fuels. Second, we simulate the economy with a smaller

initial technological gap between renewables and energy storage. For comparison, we assume
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that the initial productivity of energy storage is +100% higher than its observed value. We

remain agnostic about the cause of this improvement, which could stem, for example, from

greater historical public support for storage R&D. While the first shock captures the effect of

the shale gas boom on the economy, the second shock represents a counterfactual scenario in

which past policy has partially closed the productivity gap between renewables and storage.

Figure 7 shows the output of these different scenarios. For comparison, we define a

baseline scenario (orange line) as the scenario without shocks and the current energy policy

from the previous policy exercises. The figure shows that the fracking boom resulted in a

reallocation of innovation from renewables and storage to fossil fuels (brown line), in line with

Acemoglu et al. (2023). As a result, the share of clean energy is significantly lower. However,

if instead of the fracking boom, we had a +100% increase in the initial productivity of energy

storage (pink line), this would have substantially increased innovation efforts in renewables

due to the lower productivity gap between renewables and energy storage.

Consequently, the lack of more productive storage technology leads to a reduction in the

share of clean energy with a magnitude similar to that of the shale gas boom. Specifically, if

we had more productive storage technology, the initial share of clean energy would increase

from 11.1% to 15.7%, whereas the shale gas boom decreases the initial share of clean energy

from 11.1% to 5%. This exercise illustrates how the large technological gap between renew-

ables and storage can reduce the level of innovation in renewables by a magnitude similar to

that of the shale gas boom.

6 Welfare and emissions

In this section, we first describe the carbon cycle and the climate damage function, and

then estimate the impact of climate policy on carbon dioxide emissions (CO2) and consumer

welfare.
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Figure 7: Allocation of scientists and share of clean energy from 2015 to 2090 from simulations
with +100% increase in Ad0 (shale gas boom) or a +100% increase in As0 (more efficient
storage technology). Baseline is the scenario with current energy policy (without the IRA
clean production subsidy) in absence of the shocks.

Carbon cycle and damage function

We assume that global warming causes damages that reduce consumption, denoted as Ct.

US consumers derive utility from their national consumption after accounting for these dam-

ages. In addition, they care about the ROW after-damages consumption. To capture these

preferences, we parameterize the per-period utility function as

u(Ct, St) =
(Ω(St)Ct)

1−υ

1− υ
=

(
Ω(St)

(
CUS
t + ιCROW

t

))1−υ
1− υ

where St represents the quality of the environment, measured by the increase in atmospheric

concentrations above pre-industrial times. Ω ∈ [0, 1] is the fraction of consumption preserved

after climate damages. When accumulated emissions are low, that is, when St is low, climate

damages to consumption are minimal, and Ωt → 1. CUS
t and CROW

t represent consumption

before accounting for climate damages in the US and in the ROW, respectively. The param-

eter ι ∈ [0, 1] captures altruism, reflecting the extent to which US citizens care about ROW

consumption. Finally, we follow AABH by setting υ = 2 to match Nordhaus’s intertemporal

substitution elasticity.
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The atmospheric concentration of CO2 emissions above pre-industrial levels at time t is

given by

St = SUSt + SROWt

where SUSt and SROWt are the accumulated CO2 emissions in the U.S. and the rest of the

world, respectively. By assumption, St can take values only in the interval [0, S̄]. The upper

bound on accumulated emissions, S̄, captures the concern that there exists some tipping

point that once reached, there is a climate catastrophe, in which case Ωt = 0 ∀ t. Emissions

in the U.S. accumulates according to a the following difference equation

SUSt+1 = ξYdt + SUSt

where emissions from one additional unit of Yd cause an increase in CO2 concentrations by

ξ units. We assume that accumulated CO2 emissions from the rest of the world grows at a

constant rate

SROWt = (1 + g)tSROW0

where g is the growth rate and SROW0 is the initial level of CO2 emissions from the rest of

the world prior to the simulations.

Total CO2 emissions from energy and industrial processes from 2006 to 2010 were 29.76

GtCO2 in the U.S. and 140.42 GtCO2 in the rest of the world.25 In the same period, the

average capacity of fossil fuel power generation in the U.S. was 769.95 million kilowatts in

the US.26 Therefore, we set SROW0 = 140.42 and ξ = 29.76/769.95 ≈ 0.039. To calibrate the

growth rate of emissions in the rest of the world, we assume that the world is on a path to

reach the 2◦C target, independent of the US. Therefore, we choose a per-period growth rate

25From BP. Emissions include carbon dioxide emissions from energy, carbon dioxide emissions from flaring,
methane emissions in carbon dioxide equivalent and carbon dioxide emissions from industrial processes. Note
that these numbers do not include emissions from residential, agriculture and transportation.

26From the Monthly Energy Review by the EIA. See Table 7.7a: https://www.eia.gov/totalenergy/

data/monthly/
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of 15%, which corresponds to approximately 2◦C of warming by the end of the simulation

period in the No policy scenario.27

An increase in accumulated emissions, St, causes an increase in the global mean temper-

ature, resulting in damages. The relationship between CO2 emissions and global warming

can be approximated by a linear function in accumulated emissions (Dietz and Venmans,

2019, Dietz et al., 2021). We therefore map emissions to temperature change by using the

following linear function

∆(Tt) = ∆(T0) + TCRE × St

where ∆(Tt) is the increase in the global mean temperature at time t and ∆(T0) is the increase

in temperatures that we have already experienced at the beginning of our simulations. TCRE

is the transient response of the climate to cumulative carbon emissions, which measures the

temperature change of an additional unit of accumulated CO2 emissions. Dietz et al. (2021)

suggests a TCRE of 1.7◦C per trillion tons of cumulative carbon emissions (TtC). We increase

the estimate by 10% to take into account the warming from non-CO2 greenhouse gases (Allen,

2016). This results in a TCRE of 1.87◦C/TtC, which corresponds to 0.00051◦C/GtCO2.28

As our simulations start after 2010, we assume global warming of 1◦C at the start of our

simulation period.29

We follow AABH and relate global warming to economic damages by using the following

function

Ω(∆(T )) =
(∆disaster −∆(T ))λ − λ∆λ−1

disaster(∆disaster −∆(T ))

(1− λ)∆λ
disaster

,

where ∆(T ) is the increase in the global mean temperature above its pre-industrial level

given accumulated emissions at time t. We set the disaster temperature, ∆disaster, equal

27As each period in the simulations is 5 years, the per-period growth rate corresponds to an approximate
annual growth rate of 3%.

28Note that the conversion factor from TtC to TtCO2 is 12/44.
29The temperature anomaly in 2010 was approximately 0.7◦C for the ocean average temperature and 1.5◦C

for the land average temperature in 2010: https://berkeleyearth.org/global-temperature-report-

for-2023/
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to 6◦C, which corresponds to a maximum carbon budget, S̄, of 9,804 GtCO2.30 When the

carbon budget is used up, climate damages are a 100% of consumption. In a scenario of 3◦C

temperature increase by 2100, van der Wijst et al. (2023) found global damages to be in the

range of 10-12% of GDP. Therefore, we match our damage function to correspond to a 10%

reduction in consumption at 3◦C warming, which leads to a value of λ = 0.5958.

Welfare analysis

We explore the welfare implications of the policy analysis in Section 4. Specifically, we use

the carbon cycle and damage function explained above to calculate and compare the welfare

for each of the different policy scenarios. In each policy scenario, the discounted sum of

utility is calculated as
T∑
t=1

βt
(Ω(St)

(
CUS
t + ιCROW

t

)
)1−υ

1− υ

where β is the per-period discount factor. We use Nordhaus’ preferred choice of 1.5% per

annum discounting and set β = 0.9855 since one period corresponds to 5 years. As there

are no efficiency losses in the model, per-period consumption is simply total energy capacity

minus the input used to produce the machines. That is, the economy budget restriction is

CUS
t = Yt − φ

(∫ 1

0

xidtdi+

∫ 1

0

xirtdi+

∫ 1

0

xistdi

)
(27)

In our model of the US economy, CROW
t is exogenous, meaning that the US can only

influence ROW consumption after climate damages, through its pollution activity. CROW
t is

represented by global electricity capacity, excluding US capacity.31 We assume CROW
t grows

exogenously at a 2% annual rate.

30S̄ = (∆disaster −∆(T0))/TCRE = (6− 1)/0.00051 ≈ 9, 804
31According to the EIA, the average global electricity capacity for fossil fuels, renewables and hydroelectric

pumped storage between 2006 and 2010 was 4330 million kilowatts: https://www.eia.gov/international/
data/world/electricity/electricity-capacity. After subtracting total US capacity (909.09 million
kW), the resulting a ROW capacity is 3420.91 kW.
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Figure 8: Output from the carbon cycle and damage function in the policy scenarios. Note
that CO2 emissions is the accumulated sum of emissions only in the US, whereas the tem-
perature change is the global warming caused by CO2 emissions in the rest of the world as
well.

Figure 8 shows the output of the carbon cycle and the damage function for each of the

four policy scenarios explored in Section 4. As expected, emissions and temperature change

are highest in the No policy scenario, and lowest in the Sufficient subsidy scenario. Fur-

thermore, both consumption and damage from climate change are highest in the No policy

scenario, and lowest in the Sufficient subsidy scenario. Although shifting production to

clean energy has a positive impact on utility through reduced climate damage, there is also a

large reduction in consumption due to the fact that clean energy is substantially less produc-

tive than fossil fuel energy. However, note that the difference in temperature by the end of

the simulation period between the No policy and Sufficient subsidy scenarios is relatively

modest (< 0.3◦C), which is due to our assumption of emissions from the rest of the world

being unaffected by U.S. climate policy.

Table 4 shows the welfare analysis of the different policy scenarios and for different values

of the altruism parameter ι. For iota = 0, column 1 shows the percentage loss in consumption-

equivalent welfare relative to the No policy scenario, and shows a reduction in welfare in all

policy scenarios relative to theNo policy scenario. For example, current policy implies a loss

of 7.66% compared to the scenario without any climate policy. This indicates that the gain

from a reduction in economic damages is less than the cost of reduced consumption caused
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by switching to a less productive energy source (i.e., clean energy). Furthermore, the welfare

loss increases in the stringency of climate policy. Column 2 shows the percentage change

in consumption-equivalent welfare compared to the Current policy scenario. The column

shows that implementing the IRA clean production subsidy results in a welfare reduction that

is 15.24% higher compared to the current policy, while implementing the sufficient subsidy

to reach the COP28 results in a welfare reduction that is 187.53% higher.

Table 4: Welfare analysis of policy scenarios.

iota = 0 iota = 0.5 iota = 1

%loss %gain %loss %gain %loss %gain
(1) (2) (3) (4) (5) (6)

No policy N/A N/A N/A N/A N/A N/A
Current policy 7.66 N/A 2.4380 N/A 1.4349 N/A
IRA subsidy 8.82 -15.24 2.7745 -13.80 1.63 -13.49
Sufficient subsidy 22.02 -187.53 6.52 -167.45 3.8060 -165.26
Carbon tax 102.94 -1244.43 23.33 -856.88 13.17 -818.05

In other words, in all of our policy scenarios, we find that climate policy is causing a

reduction in welfare relative to a scenario without climate policy due to the inefficiency of

clean energy. However, there are several important caveats to the simple welfare analysis

presented here. First, we have assumed that the rest of the world is already on the 2◦C path,

and therefore damages from climate change will be low in the U.S. regardless of national

policy. Second, the policy rates in the different scenarios are based on either observed or

hypothetical values, and they could potentially be far from the optimal policy rates. For

example, current climate policy severely distorts the decision to innovate in storage due to

the large innovation subsidy given to renewables, and as a consequence, storage innovation

is actually higher in the absence of climate policy.

Unsurprisingly, increasing the level of altruism reduces the losses associated with policy

stringency because the benefits of US emissions reductions in ROW are part of US utility.

Finally, we examine a hypothetical scenario in which a carbon tax is in place, alongside

41



research subsidies but without production subsidies. We implement a 0.5 tax on the use of

dirty inputs. The welfare results under this carbon tax are shown in the last row of Table 4.

As expected, the tax leads to significantly larger welfare losses. This outcome is not surprising

for several reasons. The first is methodological: although we apply a close approximation of

a globally optimal carbon tax, our model follows the directed technical change framework,

where the optimal policy involves a combination of a carbon tax and research subsidies.

The latter, however, is likely far from optimal in this case. Second, a carbon tax places a

significant short-term burden on the dirty sector, which is relatively more advanced. This

explains why the short-term welfare losses are so substantial.

7 Conclusions

Both the endogenous growth literature and policymakers have largely overlooked the im-

portance of storage technologies in the energy transition. While endogenous growth models

often narrow the problem down to a trade-off between fossil fuels and renewables, public sup-

port has disproportionally focused on renewable innovation, sidelining storage technologies.

This project seeks to bridge the gap between the endogenous growth literature and studies

addressing the intermittency challenges of renewable energy, which are typically confined to

short-term analysis. The ultimate goal is to provide a better, yet simplified, framework that

allows us to shed light on the role of storage to meet the ambitious environmental goals ahead

and ensure the energy transition.

Unlike previous studies, we develop a framework that has the ability to explain the in-

novation patterns observed over recent decades. Our framework demonstrates that the gap

between renewables and storage technologies plays a critical role in the transition away from

fossil fuel illovation. It also conveys a variable elasticity of substitution between renewables

and dirty sources of energy. In our quantitative analysis, we find that current policies in

the U.S. are insufficient to meet the ambitious environmental goals over the next decades.
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Substantially greater efforts are needed if the current policy framework—based on subsidies

to clean energy production—is to be maintained, which is not only ineffective but also incurs

a non-negligible welfare cost for consumers.

43



References

Acemoglu, Daron. 2002. “Directed technical change.” Review of Economic Studies 69 (4):781–

809.

Acemoglu, Daron, Philippe Aghion, Lint Barrage, and David Hemous. 2023. “Climate

Change, Directed Innovation, and Energy Transition: The Long-run Consequences of the

Shale Gas Revolution.” NBER Working Paper No. 31657 .

Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous. 2012. “The

Environment and Directed Technical Change.” American Economic Review 102 (1):131–

166.

Acemoglu, Daron, Ufuk Akcigit, Douglas Hanley, and William Kerr. 2016. “Transition to

clean technology.” Journal of Political Economy 124 (1):52–104.

Aghahosseini, Arman, A. A. Solomon, Christian Breyer, Thomas Pregger, Sonja Simon, Peter
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Karaduman, Ömer. 2023. “The Economics of Grid-Scale Energy Storage in Wholesale Elec-

tricity Markets.” Working Paper .

Karydas, Christos and Lin Zhang. 2019. “Green tax reform, endogenous innovation and the

growth dividend.” Journal of Environmental Economics and Management 97:158–181.

Lamp, Stefan and Mario Samano. 2022. “Large-scale battery storage, short-term market

outcomes, and arbitrage.” Energy Economics 107 (May 2021):105786. URL https://

doi.org/10.1016/j.eneco.2021.105786.

Lazard. 2024. “Levelized Cost of Energy+.” Tech. Rep. 2. URL https://www.lazard.com/

media/%0Axemfey0k/lazards-lcoeplus-june-2024-_vf.pdf.

Mattauch, Linus, Felix Creutzig, and Ottmar Edenhofer. 2015. “Avoiding carbon lock-in:

Policy options for advancing structural change.” Economic Modelling 50:49–63.

Nordhaus, William D. 1993. “Optimal Greenhouse-Gas Reductions and Tax Policy in the

DICE model.” The American Economic Review 83 (2):313–317.

Papageorgiou, Chris, Marianne Saam, and Patrick Schulte. 2017. “Substitution between

clean and dirty energy inputs: A macroeconomic perspective.” Review of Economics and

Statistics 99 (2):281–290.

47

https://doi.org/10.1016/j.jeem.2024.102982
https://doi.org/10.1016/j.jeem.2024.102982
https://doi.org/10.1016/j.eneco.2021.105786
https://doi.org/10.1016/j.eneco.2021.105786
https://www.lazard.com/media/%0Axemfey0k/lazards-lcoeplus-june-2024-_vf.pdf.
https://www.lazard.com/media/%0Axemfey0k/lazards-lcoeplus-june-2024-_vf.pdf.


Pommeret, Aude and Katheline Schubert. 2022. “Optimal energy transition with variable

and intermittent renewable electricity generation.” Journal of Economic Dynamics and

Control 134:104273. URL https://doi.org/10.1016/j.jedc.2021.104273.

Popp, David. 2004. “ENTICE: endogenous technological change in the DICE model of global

warming.” Journal of Environmental Economics and Management 48 (1):742–768.
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A Appendix

A.1 Stylized facts

Public support of clean innovation has been directed towards renewables

The patterns in public R&D spending of the recent decades reveal intriguing aspects of public

support for renewable and storage energy technologies. First, there has been a persistent

bias for renewables over storage in public funding for clean research, especially since 2005.

Second, the fossil fuel R&D public spending over total energy spending has been mostly

stable, especially since 2000. These patterns are summarized in Figure A1, which showcases

the public budgets allocated to different types of energy technology R&D for all IEA members.

Evolution of patent applications

Figure A2 presents the data from Figure 1 expressed as a proportion of total patents. Figures

A3 and A4 illustrate that the evolution of renewables and storage patent applications is

similar across patent offices.
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Figure A1: Public R&D spending on energy research. All IEA members Source: IEA (2023)
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Figure A2: Patent applications over total patents filed at the USPTO, 1978-2018, in energy
technologies. To be classified as a renewable patent, the application must have a CPC
(cooperative patent classification) code included in the “Low-carbon energy supply” category
from the IEA (2021). Storage patents are those classified as batteries, hydrogen storage and
fuel cells. Source: Patstat

52



Figure A3: Number of renewable technology patents over total applications filled at selected
patent offices, 1978-2018. To be classified as a renewable patent, the application must have
a CPC (cooperative patent classification) code included in the “Low-carbon energy supply”
category from the IEA (2021).
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Figure A4: Number of storage technology patents over total applications filled at selected
patent offices, 1978-2018. Storage patents are those classified as batteries and hydrogen
storage. Source: Patstat

A.2 Characterization of the decentralized equilibrium

Producers of the final consumption good, Yt, maximize their profits while taking into account

the taxes and subsidies of using each input, zjt

max
{Ydt,Yct}

PtYt − pdt(1− zdt)Ydt − pct(1− zct)Yct. (A1)
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The subsidies can either be positive (effective subsidy) or negative (effective tax). A negative

subsidy for the dirty input corresponds to a carbon tax. From the FOC’s we find the following

price of the effective clean input relative to the dirty input,

pct(1− zct)

pdt(1− zdt)
=

(
Yct
Ydt

)− 1
ϵ

. (A2)

Perfect competition implies the following price index of the final consumption good,

(pct(1− zct))
1−ϵ + (pdt(1− zdt))

1−ϵ = P 1−ϵ
t ≡ 1, (A3)

where the price of final energy is used as the numeraire.

Producers of the effective clean input maximize their profits,

max
{Yrt,Yst}

pctYct − prtYrt − pstYst, (A4)

and from the FOC’s we find the following price of renewables relative to storage,

prt
pst

=
δ

1− δ

(
Yrt
Yst

)− 1
ρ

. (A5)

From equations (A2) and (A5) follows that

Remark 1. Under Assumption 1, the clean price relative to the dirty price and the

renewable price relative to the storage price are both decreasing in clean and renewable

supply, respectively. However, this relationship is more pronounced between renewable and

storage.

Perfect competition implies the following price index of the effective clean good

δρp1−ρrt + (1− δ)ρp1−ρst = p1−ρct . (A6)
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Inserting for optimal demand of machines from Eq. (8) into the input production function

in Eq. (3), intermediate production in sector j can be written as,

Yjt =

(
α2

ψ

) α
1−α

p
α

1−α

jt LjtAjt, (A7)

where Ajt ≡
∫ 1

0
Aijtdi.

Prices

Combining the expressions of intermediate production in Eq. (A7) and the wage rate in Eq.

(5) with the fact that the wage rates must be equal in all three sectors, we find the following

relative prices of the inputs,

prt
pdt

=

(
Art
Adt

)−(1−α)

,
prt
pst

=

(
Art
Ast

)−(1−α)

and
pst
pdt

=

(
Ast
Adt

)−(1−α)

. (A8)

Hence, the input with a higher technological level is cheaper. As in AABH, Eq. (A8)

illustrates that the price effect, defined in Eq. (12), favors innovation towards the least

advanced sector. Combining the relative price of renewables in Eq. (A8) with the price

index of clean energy in Eq. (A6), we find the following expressions for renewables and

storage input prices

p1−ρst

(
(1− δ)ρAσrt + δρAσst

Aσrt

)
= p1−ρct and p1−ρrt

(
(1− δ)ρAσrt + δρAσst

Aσst

)
= p1−ρct (A9)

where σ ≡ (1 − α)(1 − ρ). Inserting the price of renewables relative to dirty energy in Eq.

(A8) into Eq. (A9), we find the following relationship between the prices of clean and dirty

energy,

pct = pdt

(
Adt

ArtAst

)1−α

((1− δ)ρAσrt + δρAσst)
1

1−ρ . (A10)

Insert the expression for the price of pct above into the price index of the final consumption
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good in Eq. (A3), we find the following price of the dirty input,

pdt =
(ArtAst)

1−α[
(ArtAst)ϕ(1− zdt)1−ϵ + Aϕdt ((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ (1− zct)1−ϵ

] 1
1−ϵ

(A11)

where ϕ ≡ (1 − α)(1 − ϵ). By inserting for the price of the dirty input into Eq. (A10), we

find the following price of clean energy,

pct =
A1−α
dt ((1− δ)ρAσrt + δρAσst)

1
1−ρ[

(ArtAst)ϕ(1− zdt)1−ϵ + Aϕdt ((1− δ)ρAσrt + δρAσst)
1−ϵ
1−ρ (1− zct)1−ϵ

] 1
1−ϵ

. (A12)

Lastly, insert the price of the clean good into the expressions in Eq. (A9), the prices of

renewables and storage inputs can be expressed as

pst =
(ArtAdt)

1−α[
(ArtAst)ϕ(1− zdt)1−ϵ + Aϕdt ((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ (1− zct)1−ϵ

] 1
1−ϵ

, (A13)

and

prt =
(AstAdt)

1−α[
(ArtAst)ϕ(1− zdt)1−ϵ + Aϕdt ((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ (1− zct)1−ϵ

] 1
1−ϵ

. (A14)

All prices are now expressed as functions of the average productivity levels of the three input

sectors—dirty, renewable, and storage technology.

Labor shares

Combining the expressions for the relative price of renewables in Eqs. (A5) and (A8) with the

production for renewables and storage in Eq. (A7), the relative labor share used to produce

renewables can be expressed as

57



Lrt
Lst

=

(
δ

1− δ

)ρ(
prt
pst

)−ρ(
Art
Ast

)−(1−α)

. (A15)

Inserting for the prices of these inputs from Eqs. (A13) and (A14), the relative labor share

can be expressed as,
Lrt
Lst

=

(
δ

1− δ

)ρ(
Art
Ast

)−σ

. (A16)

Since Lrt + Lst = Lct, where Lct is total labor used in the production of clean energy, the

shares of labor used to produce renewables and storage can be expressed as functions of the

technology levels and the total labor used to produce clean energy,

Lrt =
δρAσst

(1− δ)ρAσrt + δρAσst
× Lct and Lst =

(1− δ)ρAσrt
(1− δ)ρAσrt + δρAσst

× Lct. (A17)

To find the relative labor share of clean energy, we use the expression of the relative price

of clean energy in Eq. (A2), and insert for production of the inputs. Notice that production

of the dirty good is given directly by Eq. (A7), while the production of the clean good

is found by first inserting for intermediate production of renewables and storage from Eq.

(A7) into the production function of the clean good in Eq. (2). This gives us the following

expression.

((
pct(1− zct)

pdt(1− zdt)

)−ϵ
) ρ−1

ρ

= δ

((
prt
pdt

) α
1−α Lrt

Ldt

Art
Adt

) ρ−1
ρ

+ (1− δ)

((
pst
pdt

) α
1−α Lst

Ldt

Ast
Adt

) ρ−1
ρ

(A18)

Inserting for relative prices from Eq. (A8), then for the renewable and storage labor in terms

of clean labor in Eq. (A17), the relative labor share of the clean good can be expressed as

Lct
Ldt

=

(
pct(1− zct)

pdt(1− zdt)

)−ϵ(
Adt

ArtAst

)1−α

((1− δ)ρAσrt + δρAσst)
1

1−ρ . (A19)

We then insert for the prices of inputs from Eqs. (A11) and (A12), which results in the
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following expression for the relative labor share used to produce clean energy,

Lct
Ldt

=

(
Adt

ArtAst

)ϕ
((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ

(
1− zct
1− zdt

)−ϵ

. (A20)

Remark 2. From expression (A16) and (A20) follows that the more advanced sector

hires more labor if the two goods are substitutes and hires less labor if the two goods are

complements.

Proof. The remark follows from the fact that in (A16), the
∂(Lr

Ls
)

∂(Ar
As

)
< 0 and in (A20), the

∂(Lc
Ld

)

∂(
Ad

ArAs
)
< 0.

Remark 2 summarizes the following. Both Eqs. (A15) and (A19) show that the allocation

of labor into each sector depends on the relative technologies and the relative prices. Relative

prices depend, ultimately, on relative technologies (see Eqs. (A8) and (A10), respectively).

The two channels work in opposite directions. That is, a relative increase in Art (Adt) reduces

relative Lrt (Ldt) via the direct technology force (see eqs. (A15) and (A19)), and increases

relative Lrt (Ldt) via the price effect (see Eqs. (A8) and (A10 combined with A15) and

(A19). However, under Assumption 1, the net effect of these two opposing forces, captured

by expressions (A16) and (A20), differs between relative renewable and relative clean. While

the technology force dominates the price force in the relative labor of the two complement

inputs (renewable-storage), the price force dominates when inputs are substitutes (clean-

dirty). Hence, an increase in relative Art (Adt) leads to a net reduction (increase) in relative

Lrt (Ldt).

Remark 3. From Remark 2 follows that the market size effect in eq. (12) pushes

innovation towards the more advanced sector for the two substitute inputs but towards the

least advanced sector for the two complement inputs.

Lastly, using the market clearing condition, Lct + Ldt = 1, we can express the shares of

labor used to produce the clean and dirty inputs as functions of the technology levels and
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the carbon tax,

Ldt =
(ArtAst)

ϕ (1− zc)
ϵ

(ArtAst)
ϕ (1− zc)ϵ + Aϕdt ((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ (1− zd)ϵ

and

Lct =
Aϕdt ((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ (1− zd)

ϵ

(ArtAst)
ϕ (1− zc)ϵ + Aϕdt ((1− δ)ρAσrt + δρAσst)

1−ϵ
1−ρ (1− zd)ϵ

. (A21)

Output

Inserting for the prices and labor shares found above into the production function of in-

termediate inputs in Eq. (A7), we find the following expressions for the production of the

renewable input,

Yrt =

(
α2

ψ

) α
1−α δρArtA

α+σ
st Aα+ϕdt (1− zd)

ϵK
ρ−ϵ
1−ρ[

(ArtAst)
ϕ (1− zd)

1−ϵ + AϕdtK
1−ϵ
1−ρ (1− zc)

1−ϵ
]α

ϕ
[
(ArtAst)

ϕ (1− zc)
ϵ + Aϕdt (1− zd)

ϵK
1−ϵ
1−ρ

]
(A22)

the storage input,

Yst =

(
α2

ψ

) α
1−α (1− δ)ρAstA

α+σ
rt Aα+ϕdt (1− zd)

ϵK
ρ−ϵ
1−ρ[

(ArtAst)
ϕ (1− zd)

1−ϵ + AϕdtK
1−ϵ
1−ρ (1− zc)

1−ϵ
]α

ϕ
[
(ArtAst)

ϕ (1− zc)
ϵ + Aϕdt (1− zd)

ϵK
1−ϵ
1−ρ

]
(A23)

and the dirty input,

Ydt =

(
α2

ψ

) α
1−α Adt (ArtAst)

α+ϕ (1− zc)
ϵ[

(ArtAst)
ϕ (1− zd)

1−ϵ + AϕdtK
1−ϵ
1−ρ (1− zc)

1−ϵ
]α

ϕ
[
(ArtAst)

ϕ (1− zc)
ϵ + Aϕdt (1− zd)

ϵK
1−ϵ
1−ρ

]
(A24)

where,

K ≡ (1− δ)ρAσrt + δρAσst.

To find an expression for the production of the clean input, we insert the production of

60



renewables and storage inputs into the production function of the clean good in Eq. (2),

Yct =

(
α2

ψ

) α
1−α ArtAstA

α+ϕ
dt (1− zd)

ϵK
ϵ

ρ−1[
(ArtAst)

ϕ (1− zd)
1−ϵ + AϕdtK

1−ϵ
1−ρ (1− zc)

1−ϵ
]α

ϕ
[
(ArtAst)

ϕ (1− zc)
ϵ + Aϕdt (1− zd)

ϵK
1−ϵ
1−ρ

] .
(A25)

Lastly, insert the production of the clean input and the dirty input into the production

function of the final good in Eq. (1), we find the following expression for the production of

the final consumption good,

Yt =

(
α2

ψ

) α
1−α

ArtAstAdt (1− zd)
ϵ

[
(ArtAst)

ϕ (1− zd)
1−ϵ + AϕdtK

1−ϵ
1−ρ (1− zc)

1−ϵ
]α+ϵ(1−α)

ϕ
[
(ArtAst)

ϕ (1− zc)
ϵ + Aϕdt (1− zd)

ϵK
1−ϵ
1−ρ

] .
(A26)

A.3 Data sources and calibration

A.3.1 Alternative estimations of ρ

Given the lack of empirical estimates of the substitution elasticity between renewables and

energy storage, we collect various datasets on renewable and storage electricity generation

and capacity to determine which elasticity values best fit our data within a CES function.

First, we use bid information from the US solar-plus-storage and wind-plus-storage markets.

This data reveals how electricity companies plan to integrate renewable and storage tech-

nologies to fulfill specific demand requirements. Second, we use Aghahosseini et al. (2023)’s

forecasts on 2050 electricity generation by source, including storage, under an IEA scenario

that reaches net-zero generation by mid-century. With these datasets we are able to calculate

the elasticities that best fit the data to a CES renewable electricity generation data. We ob-

tain values that range from 0.33 to 0.75. In our calibration, we use an estimate of 0.5, which

lies within the estimated range and ensures that the two inputs are strong complements in

producing clean energy.
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A.3.2 Heat maps

The heat map in Figure A5 shows the relative price and labor ratios in the period prior to

our simulations (2006-2010) for different combinations of ρ and δ. ρ varies between 0.1 and

0.9, while delta varies from 0.05 to 0.95. All other parameters are as in the table in the main

text.

Our estimates from the data are:

• LCOE for renewables (wind and PV) and energy storage (battery) in 2013: 87/272.5 ≈

0.32

• Average LCOE for renewables (wind and PV) and fossil fuels (coal, natural gas and

natural gas peaker) from 2009-2013: 140.2/146.5 ≈ 0.96

• Average LCOE for renewables (wind and PV) and fossil fuels (coal and natural gas):

93.7/146.5 ≈ 0.64

• Average number of employees (in thousands) in clean and fossil fuel electric power pro-

duction from 2006 to 2010 (from Current Employment Statistics): (66.3× 0.49)/101 ≈

0.32

– Note that we adjust the number of employees in clean to account for the share of

workers in nuclear. From 2006 to 2010, the ratio between renewable and nuclear

power generation was 0.49.

Panel a shows the price of renewables relative to storage, and cells are annotated with

the calculated price ratio if the ratio is greater than or equal to 0.1. Panel b shows the price

of fossil fuels relative to renewables, and cells are annotated with the calculated price ratio

if it is less than or equal to 1.5. Panel c shows the share of labor in clean technology relative

to fossil fuels, and cells are annotated if the labor ratio is greater than or equal to 0.25.
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Figure A5: Caption

As seen in the figure, our chosen combination of rho and delta delivers ratios close to

the empirical estimates. For the labor ratio of clean to fossil fuels, our model estimate is

almost identical to the empirical estimate (0.33 vs 0.32). However, for both the price ratio

of renewables to energy storage and fossil fuels to renewables, our model estimates are below

the empirical estimates (0.32 vs 0.2 and 0.89 vs 0.96). In order to bring the model estimate

closer to the empirical estimate for the price ratio of renewables to storage, we could for

example increase rho from 0.5 to 0.6. However, this would increase the gap between the

model estimate and empirical estimate for the price ratio of fossil fuels to renewables. Hence,

the figure illustrates that our chosen combination of rho and delta results in reasonable values

of the price and labor ratios.

A.4 Numerical illustrations

Figure A6 zooms in Figure 2, illustrating the actual allocation of scientists following a +100%

increase in Ar0 under each scenario.

Figure A7 illustrates the indirect path dependency effect from Eq. (16) using a heat

map. It shows how the effect varies under different values of As0 (initial storage technological

level) and δ (share of renewables in clean production). The value of the effect is always

below one, but gets closer to zero (one) as As0 and δ decrease (increase). That is, when
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the productivity gap between renewables and storage incresases (because As0 decreases), or

when storage is more relevant in clean production (because δ is lower), the indirect path

dependency effect has more impact in reducing the profitability of innovation in renewables

relative to fossil fuels. On the contrary, when the productivity gap between renewables and

storage is reduced (because As0 increases), or when renewables are more important in clean

production (because δ is higher), the indirect path dependency effect has a lower impact on

this relative profitability.

A.5 Additional results

Policy scenarios with and without electric vehicle batteries R&D subsidies

The baseline results in section 4 include electric vehicle batteries’ R&D subsidies as part

of the Current policy scenario because we believe this is the most reasonable approach

to storage innovation. For transparency, we now show the results when these subsidies are

excluded. More specifically, batteries received only 0.4% of total energy R&D expenditures,

while in the same period, R&D in battery technology in electrical vehicles was subsidized with

1.5% of total public R&D expenditures. Hence, with electric vehicle batteries, renewables

receive a subsidy that is 7.1 times higher than storage (13.5/1.9), while without batteries

for electric vehicles, renewables receive a subsidy that is 33.8 times higher than storage

(13.5/0.4). In order to ease comparison, we reproduce some of the baseline settings. The

four policy scenarios are summarized in Table A1. The Energy policy scenario assumes

that production and R&D subsidies are equal to the observed rates in the energy sector in

2011 to 2015 and remain constant at these rates throughout the simulation period. However,

unlike the previous Current policy scenario, the Energy policy scenario excludes R&D

subsidies for electric vehicle batteries. As a result, the relative renewable subsidy is nearly

five times higher than before (column 4). In contrast, the + EV R&D Subsidy scenario

includes these subsidies and is equivalent to the original Current Policy scenario.
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Table A1: Overview of policy rates in alternative policy scenarios

zd zc (1 + qr)/(1 + qd) (1 + qr)/(1 + qs)

(1) (2) (3) (4)

No policy 0 0 1 1

Energy policy 0.005 0.152 5.6 33.8

+ EV R&D subsidy 0.005 0.152 5.6 7.1

+ IRA subsidy 0.005 0.2 5.6 7.1

Figure A8 summarizes the results for the first three scenarios. As before, in the absence

of production and R&D subsidies, the high productivity of fossil fuels drives most scientists

to the dirty sector, causing the share of clean energy to fall from 8% to below 4% at the

end of the simulation period. Introducing energy policy causes a large shift in scientists

from fossil fuels to renewables, but due to the low R&D subsidy in energy storage relative

to renewables, the number of scientists in storage is reduced from an initial share of 10%

to almost zero. Despite the increase in innovation in renewables, the lack of innovation in

energy storage causes a reduction in the share of clean energy at the end of the simulation

period. If innovators in energy storage also benefit from the subsidy to battery technology in

electric vehicles, then the R&D subsidy to energy storage increases, which induces scientists

to the storage sector, benefiting the share of clean energy.
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(a) Baseline parameters (Table 1)

(b) δ = 0.5

(c) δ = 0.5 and As0 = Ar0

Figure A6: Numerical example of Propositions 1 and 2. Panels (a) to (c) show the effect of
a 100% increase in the initial productivity of renewables on the allocation of scientists for
different parameter values.
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Figure A7: Heat map visualizing the indirect path dependency effect in Eq. (16), under
different values of Ast (storage technological level) and δ (share of renewables in clean pro-
duction). The values in the heatmap are derived by simulating the model with parametres
detailed in Table 1. The allocation of scientists is assumed to be equally distributed among
the three sectors, meaning one-third of scientists work in each sector. The x-axes represents
the range of δ, varying from 0.05 and 0.95. The y-axes represents Ast, ranging from the initial
value of storage technology to that of renewables technology, i.e., from As0 to Art.
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Figure A8: Simulated allocation of scientists and share of clean energy from 2015 to 2090 for
no policy and current policy (with and without R&D subsidy to EV battery technology).
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